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A finite element method is presented for solving three-dimensional radiation problems
in time-harmonic acoustics. This is done by introducing a so-called ‘‘Dirichlet-to-
Neumann’’ boundary condition on the outer boundary of the domain discretized with finite
elements. This DtN boundary condition is an exact non-reflecting boundary condition. It
has been developed by Givoli and Keller [1, 2] for two and three dimensions. Calculations,
however, have been carried out only for simple two-dimensional cases [2–6]. In this paper,
the Dirichlet-to-Neumann boundary condition for problems in three dimensions is dealt
with. From the strong form given by Givoli and Keller, the weak form is derived.
Numerical examples show the applicability and performance of the DtN boundary
condition.
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1. INTRODUCTION

Various problems in applied mechanics and engineering cannot be solved analytically.
Therefore, numerical methods have been developed. Two outstanding numerical methods
are the boundary element method and the finite element method. The boundary element
method (BEM) is a boundary discretization method and hence presents an efficient tool
for solving radiation problems in unbounded domains. However, the method fails at
so-called ‘‘critical frequencies’’, as weak singular boundary integrals occur. This
disadvantage does not appear when the finite element method is used. As the finite element
is a domain discretization method, it is actually not appropriate for solving problems in
infinite domains. To meet this difficulty, special features can be introduced in order to be
able to deal with problems in unbounded domains.

Bettess [7, 8] has developed the theory of semi-infinite elements. A layer of semi-infinite
elements is positioned around a finite domain discretized with finite elements. The
semi-infinite elements cover the entire unbounded outer domain. In this manner, problems
in infinite domains can be solved via the finite element method.

Another approach is to introduce a boundary condition on the outer boundary of the
computational domain. This boundary condition has to simulate the infinite outer domain:
i.e., it represents the influence of the unbounded domain on the finite domain discretized
with finite elements. Givoli and Keller [1, 2] have developed a so-called ‘‘Dirichlet-to-
Neumann’’ boundary condition for solving problems in infinite domains. This boundary
condition is an exact non-local boundary condition which is non-reflecting: i.e., there are
no spurious reflections of waves. Givoli demonstrated its efficiency and performance by
several numerical examples for simple radiation problems in two dimensions.
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This paper is concerned with solving the three-dimensional radiation problem by using
the finite element method and the DtN boundary condition. Initially, the radiation
problem is described. Next, the weak form of the DtN boundary condition for the
three-dimensional case is derived. Finally, numerical examples are dealt with. By
calculating the radiation problem of a breathing sphere, the numerical solution can be
compared with the exact solution. Hence the prerequisites are found for using the method
in more complicated applications. A comparison between the numerical solution and
experimental data shows the performance of the DtN method for a gearbox as an example
of a real structure.

2. THE RADIATION PROBLEM

The governing equation for the radiation of acoustic waves is the reduced wave
equation, or Helmholtz equation,

DF+ k2F= q, (1)

where F is the complex velocity potential, k is the wavenumber and q is the source term
of the potential. The reduced wave equation is derived from the acoustic wave equation
when only time harmonic waves are considered [9]. The surface of the radiator presents
the inner boundary of the domain. Here two boundary conditions are possible. The
Dirichlet boundary condition

F= p̂(x)/ir0 ck , [x $ Gp , (2)

relates the velocity potential to the sound pressure p̂(x), the sound speed c, the wave
number k and the density r0 of the undisturbed medium. i is the imaginary unit and Gp

is the part of the boundary where the pressure p̂(x) is given (see Figure 1). The Neumann
boundary condition

9F · n=−v̂n (x), [x $ Gv , (3)

is a relation between the normal derivative of the potential F and the given normal surface
velocity v̂n on the boundary Gv . To ensure that there are no incoming waves, the
Sommerfeld radiation condition has to be fulfilled. It states that

Figure 1. The area V of an acoustic radiator with its boundaries Gv and Gp .
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lim
r:a

r(1F/1r−ikF)=0, (4)

where r is the radial co-ordinate.

3. THE DtN METHOD

3.1.   

This paper is concerned with the radiation problem in an infinite domain, described by
equations (1)–(4). To solve this problem, the unbounded domain is divided into two
subdomains by an artificial boundary GR (see Figure 1). For this boundary, a sphere of
radius R is chosen. As the original domain is split, the original problem has to be replaced
by two sub-problems that have to be solved. They are called sub-problem O and
sub-problem I.

Sub-problem O is situated on the outer domain D, which is an infinite domain. It is the
radiation problem of a sphere and it is given by equations (1) and (4) and a boundary
condition on the inner boundary GR of this sub-problem; namely, the surface of the sphere.
For this problem an exact solution can be given. There are, however, unknown constants
ajn and bjn (see below), as the boundary condition on the inner boundary GR is not yet
known.

According to Smirnow [10], the exact solution of problem O in spherical co-ordinates
yields

F(r, u, f)= s
a

n=0

H(1)
n+1/2 (kr)

zkr
s
n

j=0

' Pj
n (cos f) [ajn sin ( ju)+ bjn cos ( ju)], (5)

where the unknown constants are determined by

ajn =
zkR (2n+1) (n− j)!

2pR2H(1)
n+1/2 (kR) (n+ j)! gGR

Pj
n (cos 8) sin ( jq)F(R, 8, q) dG, (6)

bjn =
zkR (2n+1) (n− j)!

2pR2H(1)
n+1/2 (kR) (n+ j)! gGR

Pj
n (cos 8) cos ( jq)F(R, 8, q) dG. (6)

Here F(R, 8, q) is the unknown value of the function F on the inner boundary GR . The
prime after the sum indicates that the term with n=0 is multiplied by a factor of 1/2. H(1)

n

is the Hankel function of the first kind and of order n+1/2; Pj
n is the associated Legendre

function of the first kind.
Sub-problem I is situated on the inner domain V, which is finite. It is the radiation

problem of an arbitrary radiator into a domain the outer boundary of which is a sphere.
The inner boundary of this sub-problem is the surface of the radiator. The latter is divided
into two parts, Gp and Gv . On the surface Gp , the Dirichlet boundary condition is given;
and on the surface Gv , the Neumann condition holds. The outer boundary is the surface
of the sphere GR .

As the domain V is finite, the problem can be solved with the help of the finite element
method. The strong form of problem I is given by equations (1)–(3) and a boundary
condition on the outer boundary GR , which is not yet known. The weak form can be
obtained by multiplication with a test function w and integration over the domain V. Using
Green’s formula yields
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gV

(k2wF−9w · 9F) dV+gGR

w
1F

1n
dG=gV

qw dV+gGv

wv̂n dG, (8)

with

w(x)=0, q(x)= (k/ir0 c)p̂(x), [x $ Gp . (9)

In equation (8), the normal derivative of the potential 1F/1n on the outer boundary is not
known.

The main problem at this stage is to calculate the integral fGR
w 1F/1n dG. It can be solved

by finding a relation that replaces the value of the outward normal derivative 1F/1n by
the value of F on the outer boundary GR . This relation can be obtained by problem O.

As mentioned above, it is possible to solve problem O analytically. This gives the
unknown function F up to the unknown constants (6) and (7). From this, the normal
derivative of F can be determined, again with these constants. By eliminating the constants
of the two relations, one exact relation between the unknown function F and its outward
normal derivative 1F/1n can be found. This is the so-called ‘‘Dirichlet-to-Neumann’’
condition. It relates the ‘‘Dirichlet-datum’’ F to the ‘‘Neumann-datum’’ 1F/1n with the
help of an integral operator M:

1F/1n=MF(x). (10)

The DtN condition is chosen as the boundary condition of the outer boundary GR of
subproblem I. Hence, the above-mentioned integration can be carried out.

In this manner, the original radiation problem in an unbounded domain given by
equations (1)–(4) is replaced by a new problem. The new problem is subproblem I with
an exact boundary condition for the outer boundary GR , which can be derived from
subproblem O. It is given by equations (1)–(3) and equation (10). As the DtN boundary
condition on the sphere contains the exact solution of subproblem O, it is guaranteed that
the Sommerfeld radiation condition is fulfilled: i.e., there are no reflected waves.

The following sections are restricted to the most important relations concerning the finite
element formulation. For a detailed discussion, refer to standard textbooks such as
references [11], [12] and to reference [13]. The finite element formulation results in a system
of linear equations,

KF=F, (11)

where F is the vector of the unknown nodal values of the velocity potential, K is the
stiffness matrix and the vector F contains the values of the source term. According to
Givoli and Keller [1, 2] the stiffness matrix K consists of two matrices:

K=Ka +Kb. (12)

Ka is derived from the domain integral over V on the left side of equation (8). Kb contains
the operator M and thus corresponds to the DtN boundary condition

Kb
jl =gGR

Nj (x)MNl (x) dG. (13)

In equation (13) Nj (x) is the shape function of the node belonging to equation number
j of the resulting system of equations (11). After having solved the set of linear equations
(11), the solution of problem O can be obtained with the help of equations (5)–(7). It was
shown by Astley [14] that the solution on the outer domain D is identical to that of a
concurrent numerical method, the FE mode-matching scheme.
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3.2.    t  

Upon the normal derivative of equation (5), the weak form of the DtN boundary
condition is obtained:

1F(r, u, f)
1n br=R

=
1F(r, u, f)

1r br=R

=
1

2pR3 s
a

n=0

s
n

j=0

' bjn

×gGR

Pj
n (cos 8)Pj

n (cos f) cos (j[u− q])F(R, 8, q) dG, (14)

with

bjn =
(2n+1) (n− j)!

(n+ j)!
kRH(1)

n−1/2 (kR)− (n+1)H(1)
n+1/2 (kR)

H(1)
n+1/2 (kR)

. (15)

By inserting equation (14) into equation (13) the elements of the stiffness matrix can be
determined as

Kb
AB =gGR

{NA (f, u)
1

2pR
s
a

n=0

s
n

j=0

'bjn

×gGR

Pj
n (cos 8)Pj

n (cos f) cos (j[u− q])NB (8, q) dB} dG. (16)

dB and dG indicate the integration over domain GR . Applying an addition theorem for
the trigonometric functions and putting the sum in front of the integrals yields

Kb
AB =

1
2pR3 s

a

n=0

s
n

j=0

' bjn gGR
gGR

Pj
n (cos 8)Pj

n (cos f) [cos ( ju) cos ( jq)

+ sin ( ju) sin ( jq)]NA (f, u)NB (8, q) dB dG. (17)

It is possible to reduce the interlocked double integrals to only one integral. With the help
of the substitution dB=R2 sin 8 d8 dq the integration over GR in spherical coordinates
is performed:

Kb
AB =

R
2p

s
a

n=0

s
n

j=0

'bjn g
2p

u=0 g
p

f=0 6NA (f, u)Pj
n (cos f) sin f cos ( ju)

×g
2p

q=0 g
p

8=0

Pj
n (cos 8) cos ( jq)NB (8, q) sin 8 d8 dq

+NA (f, u)Pj
n (cos f) sin f sin ( ju)

×g
2p

q=0 g
p

8=0

Pj
n (cos 8) sin ( jq)NB (8, q) sin 8 d8 dq7 df du. (18)



.   . 388

Figure 2. The skyline of the finite element matrix (a) before and (b) after a profile optimization.

With the abbreviations

IcjnBMR2 g
2p

q=0 g
p

8=0

Pj
n (cos 8) cos ( jq)NB (8, q) sin 8 d8 dq, (19)

IsjnBMR2 g
2p

q=0 g
p

8=0

Pj
n (cos 8) sin ( jq)NB (8, q) sin 8 d8 dq, (20)

the DtN elements of the stiffness matrix are finally obtained as

Kb
AB =

1
2pR3 s

a

n=0

s
n

j=0

' bjn (IcjnA IcjnB + IsjnA IsjnB ). (21)

The computing time evaluating the integrals of equation (21) is negligible, because only
surface integrals have to be calculated. When analyzing the acoustic behavior of a structure
for several frequencies, the integration does not depend on the frequency. This is in
contrast to the BEM ([15, 16]) where the surface integrals usually have to be recalculated
for each frequency.

4. EFFECT OF NON-LOCALITY ON SKYLINE OPTIMIZATION

The DtN boundary condition is non-local. This means that the elements Kb
AB of equation

(21) are non-zero even for nodes A and B of other boundary that do not belong to the
same element. This spoils the sparseness of the resulting matrix K. A bandwidth and profile
reduction method given by Hoit and Wilson [17] was used in reference [18] to re-establish
a sparse finite element matrix. Before calling the optimization module of the finite element
program, a virtual element, which consists of all the nodes of the outer boundary, is added
to the finite element model of 11458 degrees of freedom. After profile optimization of the
model, this virtual element is removed again. A comparison of the resulting skyline without
and after the optimization is shown in Figure 2. The figure shows that despite the
non-locality of the DtN boundary condition, the sparseness of the matrix K is recovered.
The additional storage required due to the DtN boundary condition is negligible.
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5. NUMERICAL EXAMPLES

The present finite element formulation has been implemented into the general purpose
finite element code FEAP [12]. In what follows, two applications are dealt with.

5.1.     

A breathing sphere of a given radius a is the most simple radiating structure. Its velocity
potential is calculated as

F(r)
F0

M
F(r)
v0 a

=
1

1+ ika
a
r

eik(a− r), (22)

when the Neumann boundary condition v0 is given on the surface of the sphere. F0 is a
reference value.

The stiffness matrix Kb in equation (21) contains series which have an infinite number
of summands. In reality, only a finite number of summands can be calculated. The smaller
the number of summands is, the less accurate the numerical solution will be. It is therefore
imperative to know how many summands are necessary to obtain an acceptably accurate
solution. In the following, the number of summands for calculating the stiffness matrix
Kb is investigated. It is called nDtN. This is done for eight-node three-linear elements and
27-node three-quadratic elements. The potential F calculated with eight-node elements is
shown in Figure 3, while the potential F calculated with 27-node elements is shown in
Figure 4. In this particular example, the dimensionless wavernumber ka is chosen to be
ka=100. In order to reduce the physical memory requirements and the number of
multiplications, R/a is chosen to be R/a=1·1. As soon as the finite element solution on
GR is known, the potential F(r0), r0 qR, in the outer domain can be computed by using
equations (5)–(7). To integrate the terms (19) and (20), it is sufficient to use five Gaussian
points per direction and per surface element on GR .

Finite element calculations have been carried out for different values of nDtN. As expected
the results are greatly affected by nDtN. When eight-node elements are used, nDtN must be
quite large in order to approximate the solution well; for 27-node elements, nDtN is
considerably smaller. Harari and Hughes [4] stated that for two dimensions nDtN has to

Figure 3. The potential F/F0 of a radiating sphere of order zero; R/a=1·1, ka=100; variation of order nDtN,
eight-node three linear elements. nDtN values: r, 10; q, 15; r, 20; w, 25.
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Figure 4. As Figure 3, but 27-node three quadratic elemtents. nDtN values; r, 3; q, 10; r, 15; w, 20.

be greater than kR in order to obtain a good approximation of the solution. The
assumption of Harari and Hughes, however, does not hold for the three-dimensional
problem. Calculations for various wavenumbers have shown that nDtN =20 is sufficient to
approximate the solution well when 27-node elements are used. This means that in our
case nDtN is much smaller than kR, which is kR=110.

Giljohann [18] compared the DtN method with calculations using finite and semi-infinite
elements. The computational effort of the DtN method is smaller because the method of
the semi-infinite elements always needs a discretization of the far field. Despite the smaller
bandwidth of the resulting equations, the infinite elements need more computing time
because of their additional nodes and elements; in contrast to the DtN method, which
needs only a near field discretization. Although the method of infinite elements uses an
approximation for the far field behaviour and special integration procedures for the
integration in the infinite direction [19], the accuracy achieved is as good as the results of
the DtN method.

5.2.    

To illustrate the performance and ability of the DtN method for a real structure, the
radiation problem on the exterior domain of a gearbox is dealt with. For this purpose,
the sound intensity I and the radiated power P determined by experiment and by
calculation are compared.

First, the experiment is described. The surface of the gearbox is shown in Figure 5. It
is excited by an impact hammer. At all the nodes of the surface elements the normal surface
velocity v̂n of the gearbox is measured with accelerometers and then transformed into the
frequency domain by a signal analyzer. The averaged squared normal velocity v̄,

v̄=
1
Gv gGv

=v̂n =2 dG, (23)

is calculated in the frequency band from 1000 Hz up to 4000 Hz. This is done in order
to select those frequencies for the finite element simulations which show a relative
maximum of v̄, because these frequencies mainly affect the radiation of sound. They are
marked in Figure 6.
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Figure 5. Surface discretization, measurement planes, mesh-generation for the radiation problem and impact
hammer.

The active sound intensity I is the negative rate of flow of sound energy per unit area,
and it is calculated by

I( f )=−
1

2pfr0
Im { p( f )9p( f )} (24)

where f is the frequency. The measurement of I is carried out in an anechoic chamber. A
robot positions a three-dimensonal microphone probe in 359 positions to measure the
sound pressure. From this, the sound intensity vectors on the measurement surface are
determined according to equation (24).

The radiated power P is calculated according to

P( f )=−gGI

I( f ) · n dG, (25)

Figure 6. The averaged squared normal velocity. —, Experiment; q, frequencies of simulation.
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Figure 7. The radiated power level. —, Experiment; W, DtN–FEM.

where GI is the surface on which the sound intensity is measured. The gap in GI is due to
the gear’s shafts which penetrate the measurement surface.

For the calculations the exterior domain of the gearbox is discretized by sweeping the
surface elements through space radially outward from the gearbox (see Figure 5). The
outer border of the finite element discretization of spherical form is determined by the
minimal radius which encloses the measurement surface. The resulting finite element mesh
with three-linear hexahedral elements consists of 8748 nodes and 8372 finite elements. After
calculating the sound intensity an integration of the normal intensity, pointed out in
equation (25), is performed. The integration area G is selected to be the surface of the
gearbox.

The results for the measured and calculated power can be seen in Figure 7. The difference
between simulation and experiment is at most 6 dB, which is nearly the same as for
calculations carried out with semi-infinite elements by Giljohann and Zopp [20].

One frequency that shows a negligible difference of radiated power is picked out for the
plots concerning the spatial distribution of sound intensity (see Figure 8). The directions
of the vectors as well as the spatial distribution of maximum and minimum values show

Figure 8. The sound intensity I on the measurement surface; 1624 Hz; levels of the maxima Lz in dB. (a)
DtN–FEM; (b) experiment.
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a good correspondence between measurement and calculation. There is also an
acceptable agreement in the maximum level of the sound intensity vectors, which is mainly
responsible for the level of the radiated power. The difference between the experiment and
the numerical solution is only 1·1 dB. In this particular problem, the zone above the gap
on the front side can be perceived to be a dominant source. The lid for the oil inlet on
the top side of the gearbox can also be identified to be problematical with regard to
acoustic effects.

6. CONCLUDING REMARKS

A finite element method for solving radiation problems of the Helmholtz equation in
three dimensions has been presented. Calculations of the radiation of a breathing sphere
show the good convergence of the method, especially for quadratic elements. The accuracy
achieved is excellent. Its performance and ability are demonstrated for a real engineering
problem. The results indicate that numerical simulations using finite elements with the DtN
boundary condition are a good alternative to other methods in solving the reduced wave
equation in infinite domains.
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